Managing Director & Partner
New York
By Matthew Huddle, Josh Kellar, Krishna Srikumar, Krishna Deepak, and Daniel Martines
Generative AI has quickly become a major factor in a number of industries, including health care. It has the potential to transform the sector, but executives must understand how to use the technology in order to capitalize on its potential while avoiding the risks inherent in applying it to patient care. We analyzed numerous use cases across health segments, looking at both solutions already on the market and those likely to arrive soon. Our goal was to demystify generative AI and help leadership teams make sense of the options.
Generative AI algorithms can analyze large volumes of medical data and create entirely new content. The technology can improve the quality of care, make it more accessible and affordable, reduce inequities in research and care delivery, and help companies unlock value in new ways. Moreover, generative AI overcomes some of the previous hurdles to AI adoption in health care. It requires less data, is more adaptable to unfamiliar situations, and can interface better with clinical staff. These features make generative AI more broadly applicable and transferable to different health care tasks.
Generative AI has potential use cases across the health care industry. (See the exhibit.) For each segment—providers, pharmaceutical firms, payers, medtech, services and operations, and public-health agencies—we grouped the options into three categories: validated solutions already on the market, early-stage or conceptual use cases, and potential future use cases not yet in development.
Several generative AI providers are developing solutions—from diagnosis to care provision to patient monitoring—to help providers improve clinical outcomes. Others are working to improve resource utilization by both clinical and administrative staff.
Validated Products in Use Today. Paige.AI, a digital pathology company, is integrating generative AI into its products to improve the accuracy and efficiency of prostate cancer detection. It was the first company to receive FDA approval for AI use in digital pathology and is looking to integrate the resulting information into patient electronic health records along with other clinical data.
On the administrative front, Doximity, Abridge, and DeepScribe are exploring applications that automate processes such as documentation, claims handling, preauthorization and appeals, patient onboarding, and scheduling. DeepScribe, which offers AI scribing services, has been able to decrease the amount of time providers spend on administrative tasks by three hours each day, and Abridge’s ambient AI scribing products are now in use at more than 140 provider locations in the University of Kansas Health System.
Early-Stage/Conceptual Use Cases. To aid caregivers, some providers are developing digital solutions that patients interact with directly. For example, Babylon Health has created a digital health service that uses generative AI to understand patients’ evolving risk profile, helping providers offer more personalized care at lower cost. A generative AI-powered counseling chatbot available on demand from Serena delivers accessible and affordable mental health care.
Potential Future Use Cases. In the future, generative AI could support real-time patient monitoring, along with data analysis to generate personalized insights that encourage healthy behaviors or lead to timely interventions before medical conditions worsen. Generative AI could also make imaging solutions more accurate and transferable across different practice areas. Finally, the technology’s adaptability and interactivity could encourage preventive care, wellness, and healthy behaviors via personalized nudges on mobile apps, wearables, and monitoring devices.
Generative AI is accelerating drug discovery, improving clinical-trial planning and execution, and leading to more precision medicine therapies.
Validated Products in Use Today. Generative AI allowed Insilico Medicine to go from novel-target discovery to preclinical candidate in just 18 months, spending only $2.6 million. The company’s idiopathic pulmonary fibrosis drug recently received the agency’s Orphan Drug Designation after completing the preclinical phase in 30 months, much faster than average for a new treatment.
The biotech company Exscientia is using generative AI to analyze patient tissue and employ functional precision oncology to improve patient outcomes. NVIDIA is offering a set of generative AI cloud services that enable customization of AI foundation models to accelerate drug discovery and research in genomics, chemistry, biology, and molecular dynamics. The services provide pretrained models and enable researchers to fine-tune generative AI applications on their own proprietary data. The offering has been adopted by drug discovery startups such as Evozyne and Insilico Medicine, as well as by incumbents such as Amgen.
Early-Stage/Conceptual Use Cases. Several biotech firms are at an earlier stage of generative AI exploration:
Beyond drug discovery, generative AI could accelerate and improve clinical trials and precision medicine therapies. For example, digital modeling of clinical trials—including synthetic control groups—has recently been validated. Similarly, a tool developed by Synthesized can help researchers expand existing drugs beyond their initial use to treat other diseases, which could make medicines more accessible.
Potential Future Use Cases. Looking ahead, the use of generative AI at the preclinical and clinical stage could accelerate access to therapeutics, even for rare conditions whose treatment development has been difficult or economically prohibitive. The technology may be also used in the analysis of patient data to identify subgroups likely to respond to specific treatments or to personalize drugs to the unique needs of individual patients.
Payers are starting to leverage generative AI to reduce costs and improve risk management and member engagement, with the overall goal of offering higher-quality coverage at less cost to consumers.
Validated Products in Use Today. DigitalOwl is automating much of the underwriting and claims management process, reducing operating expenses and turnaround times to boost affordability.
Early-Stage/Conceptual Use Cases. Companies like ConcertAI are developing predictive models to identify and proactively manage high-risk segments based on patient medical history and demographic and social determinants of health.
Potential Future Use Cases. Generative AI could support applications like conversational AI to deliver personalized messages based on member health needs and preferences.
Generative AI could help companies create more personalized and patient-centered devices—incorporating software that allows for preventive maintenance and repairs, for example.
Early-Stage/Conceptual Use Cases. The UK’s National Centre for Additive Manufacturing is applying generative AI to optimize the design of medical devices such as prosthetics and implants, tailoring them to the needs of individual patients. And medtech company Implicity is using the technology to incorporate remote monitoring in pacemakers and implantable defibrillators.
In brain health, DiagnaMed recently announced the development of a platform leveraging generative AI to analyze electroencephalography signals in order to predict and monitor brain aging and provide insights and tools in the diagnosis, prevention, or mitigation of cognitive decline in patients with mental health and neurodegenerative disorders.
Activ Surgical, a digital-surgery pioneer, recently announced completion of its first AI-enabled case, which provides enhanced visualization and real-time, on-demand surgical insights inside the operating room.
Potential Future Use Cases. Future applications could enable companies to collect and analyze data via remote-monitoring systems, leading to more effective patient interventions. Quality control applications could predict when devices and equipment may need repairs, allowing caregivers to schedule maintenance and reduce downtime.
In health care services, generative AI can be particularly useful in data analytics and software optimization. Because it is more flexible than earlier generations of AI and can accommodate different data modes and formats—and even generate synthetic data to complement insufficient data sets—generative AI can improve the interoperability of existing applications, including health and laboratory information management systems.
Early-Stage/Conceptual Use Cases. Syntegra and Google’s EHR-Safe are creating machine-learning models that generate synthetic health care data sets, enabling fast and easy access to flexible longitudinal data that (with adequate privacy protections) can help public-health programs make more informed decisions.
Potential Future Use Cases. Future applications could help health systems in areas such as inventory tracking and restocking, cold-chain logistics, data sharing, and HR functions (including recruitment and training). Additionally, generative AI could help personalize and automate corporate functions, with potential use cases such as generative AI-enabled office applications, auto-generated knowledge management, and human-machine interaction assistance.
Public-health agencies, other health organizations, and government ministries could leverage generative AI to improve resource planning and allocation, anticipate public-health needs and interventions, and execute programs more effectively.
Early-Stage/Conceptual Use Cases. BioNTech recently acquired InstaDeep in order to develop an early-warning system for new COVID-19 variants. Structural modeling of the SARS-CoV-2 protein combined with InstaDeep’s generative AI capabilities allows the system to proactively alert researchers, vaccine developers, health authorities, and policymakers.
Potential Future Use Cases. Going forward, generative AI-powered tools could be used to monitor public health and allocate resources. In the US, Medicaid could potentially leverage the technology to better manage allocations based on health data and forecasted need. The FDA could use it when reviewing the safety and efficacy of drugs, and generative AI could help public-health groups like Doctors Without Borders predict outbreaks and mobilize resources to minimize impact.
Although generative AI technology is promising, some near-term caution is warranted. There are several inherent risks that providers must address before broad adoption in health care can occur.
Even as the range of generative AI applications continues to expand, incumbent health organizations can create the right foundation for adoption and implementation.
Generative AI involves uncertainties and risks, but it also holds the potential to dramatically increase efficiency, improve the quality of care, and create value for health care organizations. For that reason, leaders need to plot a path to capitalize on the technology—starting today.
Related Content
Read more insights from BCG’s teams of experts.
The technology has a range of uses in medtech, and the main challenge is knowing how and where to start. Here are 60 ways to generate quick wins.
「AI革命」の最前線に立たされている働き手たちは、ビジネスの展望を一変させるこのテクノロジーをどう受け止めているのでしょうか。BCGは現場従業員、管理職、経営層を対象に意識調査を実施しました。
This powerful technology has the potential to disrupt nearly every industry, promising both competitive advantage and creative destruction. Here’s how to strategize for that future.